Bounded point evaluations for cyclic Hilbert space operators

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on Quadratic Maps for Hilbert Space Operators

In this paper, we introduce the notion of sesquilinear map on Β(H) . Based on this notion, we define the quadratic map, which is the generalization of positive linear map. With the help of this concept, we prove several well-known equality and inequality...  

متن کامل

Compact Operators on Hilbert Space

Among all linear operators on Hilbert spaces, the compact ones (defined below) are the simplest, and most imitate the more familiar linear algebra of finite-dimensional operator theory. In addition, these are of considerable practical value and importance. We prove a spectral theorem for self-adjoint operators with minimal fuss. Thus, we do not invoke broader discussions of properties of spectr...

متن کامل

Hankel Operators on Hilbert Space

commonly known as Hilbert's matrix, determines a bounded linear operator on the Hilbert space of square summable complex sequences. Infinite matrices which possess a similar form to H, namely those that are 'one way infinite' and have identical entries in cross diagonals, are called Hankel matrices, and when these matrices determine bounded operators we have Hankel operators, the subject of thi...

متن کامل

*-frames for operators on Hilbert modules

$K$-frames which are generalization of frames on Hilbert spaces‎, ‎were introduced‎ ‎to study atomic systems with respect to a bounded linear operator‎. ‎In this paper‎, ‎$*$-$K$-frames on Hilbert $C^*$-modules‎, ‎as a generalization of $K$-frames‎, ‎are introduced and some of their properties are obtained‎. ‎Then some relations‎ ‎between $*$-$K$-frames and $*$-atomic systems with respect to a...

متن کامل

Chapter 10 Spectral theorems for bounded self-adjoint operators on a Hilbert space

Let H be a Hilbert space. For a bounded operator A : H → H its Hilbert space adjoint is an operator A∗ : H → H such that 〈Ax, y〉 = 〈x,A∗y〉 for all x, y ∈ H. We say that A is bounded self adjoint if A = A∗. In this chapter we discussed several results about the spectrum of a bounded self adjoint operator on a Hilbert space. We emphasize that in this chapter A is bounded, there is also a notion o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied General Topology

سال: 2003

ISSN: 1989-4147,1576-9402

DOI: 10.4995/agt.2003.2035